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Software Security Enforcement 

Grant/Contract Number: FA9550-08-1-0044 

Kevin W. Hamlen 

5 March 2012 

Abstract 
This project discovered and developed algorithms and tools for 

(1) automatically retrofitting binary legacy software with access con- 
trols, and (2) formally machine-certifying that the retrofitted software 
satisfies user-specified security policies. The research resulted in new 
software security systems for Java, ActionScript, and x86 native code 
that provably secure legacy code without any form of code-producer 
cooperation (e.g., source code or compiler support). 

1     Summary of Achievements 

1.1    Research Outcomes 

Research supported by this contract resulted in the development of three 
major software security systems with associated discoveries and innovations. 
All publications and theses cited in this report are available for download 
from the following web page: 

http://www.utdallas.edu/~hamlen/research.html 

1. We developed the Security Policy Xml (SPoX) tool suite: the first 
fully declarative, aspect-oriented policy specification and in-lined ref- 
erence monitor (IRM) system. SPoX includes tools for parsing, an- 
alyzing, and visualizing XML-based security policy specifications and 
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untrusted Java bytecode binaries. Design, implementation, and exper- 
imental results are detailed in the following publications and theses: 
[2, 9, 10, 11, 12, 13, 14, 18]. 

2. We discovered a new, more powerful IRM-certification paradigm based 
on model-checking. This was implemented in the Chekov^ verification 
system, which automatically machine-verifies the policy-compliance of 
IRM-instrumented Java and ActionScript bytecode binaries. Design, 
implementation, and experimental results are detailed in the following 
publications and thesis: [1, 3, 4, 8, 9, 15, 16, 17]. 

3. We designed and implemented Reins: a new, machine-certified soft- 
ware fault isolation (SFI) system for native x86 architectures that im- 
plements IRMs for Intel-based Windows and Linux systems without 
any code-producer cooperation, such as compile-side support, source 
code, debug symbols, or online symbol stores. Its design and imple- 
mentation are detailed in the following publications: [5. 19]. Two ad- 
ditional publications are submitted and currently under review. 

1.2    Executive Summary of Conclusions 

We met all four of the primary goals proposed for the project: 

• Our ActionScript and x86 native code IRM implementations success- 
fully incorporated machine-verifiable code optimizations during secu- 
rity retrofitting. This sufficed to offset much of the enforcement over- 
head. For x86 native code, we report overheads of less than 3%— 
substantially better than any prior system of equivalent capability to 
our knowledge [5]. 

• Our model-checking approach to IRM certification successfully verified 
dataflow-sensitive optimizations [4]. 

• SPoX facilitated formal policy analyses, such as policy inconsistency 
detection and elimination, that are provably undecidable with tradi- 
tional, non-declarative aspect-oriented specification approaches [12]. 

• We successfully extended all of the above technologies to untyped, x86 
native code software for real-world operating systems (Windows and 
Linux) [5]. 



We conclude that certified, in-lined reference monitoring is a highly feasible, 
flexible, and efficient approach to enforcing software security policies over 
binary legacy software. Additional applications of the technology are being 
explored in several subsequent projects, detailed in the next section. 

1.3    Contribution to Other Awards and Contracts 

The discoveries above have spawned three major ongoing research initiatives, 
currently supported by awards from the National Science Foundation (NSF), 
U.S. Army, and Air Force Office of Scientific Research (AFOSR): 

Securing Web Advertisements (NSF, TC:Medium, $1.2M, 2011- 
2014). In collaboration with the University of Illinois at Chicago (UIC), 
we are applying our ActionScript certifying IRM system to develop security 
systems for mobile web advertisements. Malicious web ads (malvertisements) 
are a major ongoing concern for end users, publishers, ad distribution net- 
works, and advertisers. Our ongoing work leverages the IRM technologies 
developed and reported here to provide provably sound and transparent pro- 
tections for web ad domains. 

Language-based Security for Polymorphic Malware Defense (NSF 
CAREER, TC, $500K, 2011-2016). Our successful extension of ma- 
chine-aTtih'ed SFI/IRM technologies to x86 native code architectures (see 
achievement 3 of §1.1) is a significant milestone toward extending power- 
ful language-based security technologies to COTS native code architectures. 
Last year the PI received an NSF CAREER award for ongoing research that 
develops language-based protections for binary software that is potentially 
self-modifying, untyped, memory-unsafe, and obfuscated to resist disassem- 
bly. 

Reactively Adaptive Malware (AFOSR, FA9550-10-1-0088, $450K, 
2011-2014) (U.S. Army, S350K, 2011-2012). The binary analysis and 
transformation discoveries reported here are also being applied for active 
defense. Our ongoing reactively adaptive malware project develops mobile 
code that detects, adapts, and avoids antiviral defenses fully automatically in 
the wild. Such technologies are important for anticipating and understanding 
next-generation malware, and for counter-attacking cyber-attackers. 



2     Educational Outcomes 

2.1 Student Support 

Funding from this award partially supported 5 graduate students: 

• 4 Ph.D. students: Micah Jones (graduated December 2011 [9], now 
employed by L-3 Communications), Meera Sridhar, Vishwath Mohan, 
and Richard Wartell (expected graduations within the next 1.5 years); 
and 

• 1 Masters student: Aditi Patwardhan (graduated June 2010 [14]). 

Micah's thesis [9] developed the SPoX system (see outcome 1 of §1.1) and 
its support for the Chekov^ verifier (see outcome 2 of §1.1). Aditi's the- 
sis [14] developed a visualization system for SPoX and Java bytecode [13]. 
Meera's ongoing thesis work develped Chekov^ and is extending the technol- 
ogy to transparency verification of web ad IRMs (see §1.3). Vishwath's and 
Richard's ongoing theses developed the Reins system (see outcome 3 of §1.1) 
and are continuing with its application to polymorphic malware defense and 
reactively adaptive malware (see §1.3). 

2.2 Course Development 

Research conducted under this contract contributed to the development of 
substantial educational material that augmented 3 different courses at UTD: 

• CS6V81/7301: Language-based Security (Spring '08, Spring '11) [aver- 
age student evaluation: 4.84 / 5 = Excellent]; 

• CS6371: Advanced Programming Languages (Fall '08, Spring '09. Fall 
'09, Spring '10, Spring '11) [average student evaluation: 4.21 / 5 = 
Very Good]; 

• CS4384: Automata Theory (Fall '10, Fall '11) [average student evalu- 
ation: 4.41 / 5 = Very Good] 

CS6V81/7301: Language-based Security is a graduate-level elective that 
trained students in advanced software security technologies such äs IRMs, 
SFI, information flow controls, malware analysis, and binary obfuscation. 



Students received direct, hands-on experience with discoveries and tools re- 
sulting from this contract. 

CS6371: Advanced Programming Languages is a grad-level core course 
that teaches language and compiler design. As a result of this contract, the 
course was significant augmented with examples and content motivated by 
secure software development and validation. Students learned type-theoretic 
and axiomatic semantical approaches to software security analysis. 

CS4384: Automata Theory is an undergraduate core course that teaches 
formal languages and introductory computational complexity. The course 
was augmented with significant security content including automata-based 
approaches to security policy specification and analysis. 

Federal CyberSecurity Scholarship For Service (NSF, $1.7M, 2010- 
2014). The educational developments above contributed to the establish- 
ment and enhancement of a new, NSF-supported Scholarship For Service 
(SFS) program at UTD in 2010, which recruits and trains undergraduates 
and graduates for federal cyber-security employment. The courses above 
have been instrumental for recruiting students into the program. 
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